Risk Parity Portfolio Optimization Based on CVaR
Subject Areas : New scientific findings in the fields of innovation and entrepreneurshipSeyed javad Pourhoseini 1 , sayyed mohammad reza davoodi 2 * , Mansour Momeni 3
1 - PhD student in industrial Management, financial Resources, Dehaghan Branch, Islamic Azad University, Dehaghan , Iran
2 - Associate Professor, Department of Management, Dehaghan Branch, Islamic Azad University Dehaghan, Iran
3 - Professor, Department of Management, Tehran University, Tehran, Iran
Keywords: Conditional Value at Risk, Eulers's Theorem, Homogeneous Function, Risk Parity Portfolio.,
Abstract :
Risk parity is one of the stock portfolio selection models that has received much attention after the American financial crisis in 2008. The philosophy of this model is to allocate the risk of the portfolio to the same extent among its constituent assets. Conditional value at risk is one of the popular and common measures of risk measurement in finance, which measures the mathematical expectation of loss of a stock portfolio for values beyond a threshold value and at a known confidence level and time horizon. The aim of the current research is to design and optimize the performance of the risk parity stock portfolio model with the criterion of conditional risk value. There are different approaches in modeling optimal portfolio selection that use different criteria and methods to calculate and estimate returns and risks. Various criteria have been proposed to measure risk in finance, each of which has its own advantages and disadvantages. One of the criteria that has been introduced with the aim of reducing the disadvantages of the common and popular measure of value at risk is the conditional value at risk or expected drop, which is used as a measure of risk in the present study. Conditional value at risk measures the average loss of the portfolio for cases where the amount of loss exceeds value at risk
1. دولو، م.؛ فدائی مولودی، ح. ا.؛ صفری طاهرخانی، ع. (1398). بررسی استراتژی تخصیص سهام بر اساس رویکرد ریسک برابر. راهبرد مدیریت مالی. 1-30.
2. میرمحمدی، س. ا.؛ معدنچی زاج، م.؛ پناهیان، ح.؛ جباری، ح. (1400). انتخاب سبد سهام با رویکرد ترکیبی برابری ریسک و تحلیل عاملی بر پایه تغییر رژیم مارکوف. تصمیم گیری و پژوهش در عملیات. 7(1)، 121-149.
3. Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of Banking & Finance, 26(7), 1505-1518.
4. Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical finance, 9(3), 203-228.
5. Bai, X., Scheinberg, K., & Tutuncu, R. (2015). Least-squares approach to risk parity in portfolio selection. Quantitative finance, 16(3), 357-376.
6. Bucher, C., & Osterrieder, J. (2021). Risk Parity for Multi-Asset Futures Allocation – A Practical Analysis of the Equal Risk Contribution Portfolio (June 2, 2021). Available at SSRN: https://ssrn.com/abstract=3858730.
7. Capiński, M., & Zastawniak, T. (2003). Mathematics for Finance: An Introduction to Financial Engineering, Springer.
8. Caporin, M., Lisi, F., & Janin, M. (2012). A survey on four families of perfomance measures. Working papers series, 12, 1-26.
9. Chaves, D. B., Hsu, J. C., LI, F., & Shakernia, O. (2011). Risk parity portfolio vs. other asset allocation heuristic portfolios. Journal of investing, 20, 108-118.
10. Choi, J., Kim, H., & Kim, S. (2021). Diversified Reward-Risk Parity in Portfolio Construction(September15,2021). Available at SSRN: https://ssrn.com/abstract=3871944.
11. Costa, G., & Kwon, R. H. (2019). Risk parity portfolio optimization under a Markov regime-switching framework. Quantitative finance, 19(3), 453-471.
12. Costa, G., & Kwon, R. (2020). Data-Driven Distributionally Robust Risk Parity Portfolio Optimization. SSRN Electronic Journal. 10.2139/ssrn.3709680.
13. D. K. Bagal, A. Rath, A. Barua, and D. Patnaik, “Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods,” Chaos Solitons Fractals,vol.140,p.110154,2020,doi:https://doi.org/10.1016/j.chaos.2020.110154.
14. Davallou, M., Fadaei Molodi, H., & Safari Taherkhani, A. (2019). Stock allocation strategy with equal risk contribution. Financial Management Strategy Journal, 1-30.
15. DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The review of financial studies, 22(5), 1915-1953.
16. Gambeta, V., & Kwon, R. (2020). Risk return trade-off in relaxed risk parity portfolio optimization. Journal of risk and financial management, 13(10), 1-28.
17. Kim, H., & Kim, S. (2021). Reduction of estimation error impact in the risk parity strategies. Quantitative Finance, 21(8), 1351-1364.
18. Lee, W. (2011). Risk-based asset allocation: a new answer to an old question? The journal of portfolio management, 37(4), 11-28.
19. Marat, M. (2020). A modified hierarchical risk parity framework for portfolio management. The journal of financial data science. DOI: https://doi.org/10.3905/jfds.2020.1.038
20. Mirmohammadi, E., Madanchi, M., Panahian, H., & Jabbary, H. (2021). Portfolio Selection using risk parity and factor analysis under markov regime-switching prope. Journal of Decisions& Operations Research, 7(1), 121-149.
21. Mirmohammadi, E., Madanchi, M., Panahian, H., & Jabbary, H. (2021). Stock Portfolio Optimization Using a Combined Approach of Relative Robust Risk Parity. Iranian Journal of Finance, 5(4), 87-106.
22. Nakagawa, K., Kawahara, T., & Ito, A. (2020) Asset Allocation Strategy with Non-Hierarchical Clustering Risk Parity Portfolio. Journal of Mathematical Finance, 10, 513-524.
23. Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In Probabilistic constrained optimization (pp. 272-281). Springer, Boston, MA.
24. Rockafellar, R., & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal of Risk, 2(3), 21-42.
25. Roncalli, T., & Weisang, G. (2016). Risk parity portfolios with risk factors. Quant. Finance. 16(3), 377–388.
26. Roncalli, T. (2013). Introduction to risk parity and budgeting. 1st edition, Chapman & Hall/CRC, USA.