توسعه متدولوژی ایجاد مدلهای شبیهسازی چندمقیاسی مختلط "عاملمبنا-پویاشناسی سیستم" در سازمانهای یادگیرنده
محورهای موضوعی :شریف خالقپرست 1 * , سید تقی اخوان نیاکی 2 , علینقی مشایخی 3
1 - دانشگاه صنعتی شریف
2 - دانشگاه صنعتی شریف
3 - دانشگاه صنعتی شریف
کلید واژه: شبیهسازی چندمقیاسی مختلط مدلسازی عاملمبنا مدلسازی پویاشناسی سیستم سازمان یادگیرنده,
چکیده مقاله :
تحلیل سه مقیاس سازمان، واحدهای سازمان و کارکنان انفرادی آن در دو سطح انتزاعی خرد و کلان تحت بستر زمان، مکان و رخداد میتواند تأثیر چشمگیری بر شفافسازی مفهوم یادگیری و ایجاد فرصتهای سیاستگذاری مؤثر بر مبنای آن روی شاخصهای عملکرد سیستم و عاملهای سازندهشان داشته باشد. عدم توجه جدی به این امر موجب شده تا ارتباط یادگیری سازمانی و یادگیری در سطوح خردتر سازمان به وضوح مشخص نباشد و نظارت بر اثر یادگیری در سازمان بر شاخصهای عملکردی مبهم مانده و در نتیجه نتوان به دقت متوجه شد یادگیری سازمانی یک عامل مؤثر بر مزیتهای رقابتی سازمان است یا خیر. رفع چنین ابهامی با توسعهی «رویکرد چندروشی» برای مدلسازی سیستم و یکپارچهسازی یادگیری به کمک شبیهسازی مختلط مدلها ممکن شدهاست. متدولوژی توسعهیافته در این پژوهش و معماریهای مربوطه، سکوی خام اما همهجانبهای است که پذیرای مدلسازی شفاف انواع مفاهیم انتزاعی سازمان بر روی خود است. تحلیل موردی سازمانها که محک زننده ارزش متدولوژی است میتواند موضوع اصلی پژوهشهای آتی در این حوزه باشد.
Performing the concurrent analysis of organizational, departmental and individual scales alongside macro and micro levels of abstraction in temporal, spatial and event-driven contexts may significantly clarify the concept of learning, and develops the opportunities for effective policy making accordingly. It would also help to improve the performance indicators of the system and its involved agents globally. Due to Ignorance of aforementioned concurrent analysis, the relationship between organizational learning and learning in lower scales has been ambiguous, and monitoring the effect of organizational learning on organization performance indicators has been neglected. Hence, whether organizational learning is an effective factor in the amplitude of organization competitive advantages or not has remained a serious question yet. However, a potential solution to this question has got conceivable through the multi-method system modeling perspective. Design and analysis of integrated multi-scale learning in organizations are now possible through hybrid modeling and simulation and the extended methodology presented in this research along with the related architecture. The outcome is a plain platform which embraces lucid modeling of complex abstract concepts including learning in organizations comprehensively. Future case studies may be required to further confirm the applicability of this methodology and underpin its administrative value.
[1] P. M. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization, vol. Rev. and u. 1990.
[2] C. Curado, “Organisational learning and organisational design,” The Learning Organization, vol. 13, no. 1, pp. 25–48, 2006.
[3] R. D. Stacey, Experiencing emergence in organizations. 2005.
[4] A. K. Yeung, D. O. Ulrich, S. W. Nason, and M. A. Von Glinow, Organizational Learning Capability. 1999.
[5] M. Santa, “Learning organisation review – a ‘ good ’ theory perspective,” The Learning Organization, vol. 22, no. 5, pp. 242–270, 2015.
[6] C. Featherston and M. Doolan, “A Critical Review of the Criticisms of System Dynamics,” Proceedings of the 30th International Conference of the System Dynamics Society, pp. 1–13, 2012.
[7] D. Schwandt and M. J. Marquardt, Organizational Learning: From World Class Theories to Global Best Practices (Google eBook). 1999.
[8] L. Argote and E. Miron-spektor, “Organizational Learning: From Experience to Knowledge,” Organization Science, vol. 22, no. September-October, pp. 1–39, 2011.
[9] D. Ulrich, M. A. von Gnow, and T. Jick, “Ulrich, Dave, Todd Jick, and Mary Ann Von Glinow. ‘High-impact learning: Building and diffusing learning capability.’ Organizational dynamics 22, no. 2 (1993): 52-66.,” no. 4, pp. 52–66, 1993.
[10] A. B. Antal, P. Meusburger, and L. Suarsana, Learning Organizations: Extending the Field, vol. 6. 2014.
[11] A. D. Ellinger, A. E. Ellinger, B. Yang, and S. W. Howton, “The relationship between the learning organization concept and firms’ financial performance: An empirical assessment,” Human Resource Development Quarterly, vol. 13, no. 1, pp. 5–22, 2002.
[12] T. T. Baldwin and C. C. Danielson, “Invited Reaction: Linking Learning with Financial Performance.,” Human Resource Development Quarterly, vol. 13, no. 1, pp. 23–29, 2002.
[13] C. Lucas and T. Kline, “Understanding the influence of organizational culture and group dynamics on organizational change and learning,” The Learning Organization, vol. 15, no. 3, p. 277, 2008.
[14] R. L. Ackoff, “Towards a System of Systems Concepts,” Mgmt. Science, vol. 17, no. 11, pp. 661–671, 1971.
[15] G. Torlak, “Learning Organizations,” Journal of economic and social research, vol. 6, no. 2, pp. 87–116, 2004.
[16] M. C. Jackson, Systems Thinking: Creative Holism for managers. Wiley, 2003.
[17] P. M. Senge, A. Kleiner, and C. Roberts, “The dance of change: The challenges of sustaining momentum in learning organizations,” 1999.
[18] E. M. Dar-El, HUMAN LEARNING: From Learning Curves to Learning Organizations. 2000.
[19] D. A. Kolb, “Experiential Learning: Experience as The Source of Learning and Development,” Prentice Hall, Inc., no. 1984, 1984.
[20] C. Argyris and D. A. Schon, Organizational Learning : Atheoryof Action Perspective Organizational Learning : a Theory of. 1978.
[21] B. Hedberg, “How organizations learn and unlearn,” Handbook of Organizational Design, pp. 3–27, 1981.
[22] D. H. Kim, “The Link Between Individual and Organizational Learning,” Management Review, pp. 37–50, 1993.
[23] richard j. boland jr. and fred collopy, Managing as designing. 2008.
[24] A. Borshchev, The Big Book of Simulation Modeling. 2013.
[25] A. Borshchev and A. Filippov, “From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools,” in 22nd International Conference of the System Dynamics Society, 25-29 July 2004, 2004, vol. 66, no. 11, p. 45.
[26] C. Swinerd and K. R. McNaught, “Design classes for hybrid simulations involving agent-based and system dynamics models,” Simulation Modelling Practice and Theory, vol. 25, pp. 118–133, 2012.
[27] M. Jahangirian, T. Eldabi, A. Naseer, L. K. Stergioulas, and T. Young, “Simulation in manufacturing and business: A review,” European Journal of Operational Research, vol. 203, no. 1, pp. 1–13, 2010.
[28] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based optimization methods applied to building performance analysis,” Applied Energy, vol. 113, pp. 1043–1058, 2014.
[29] R. Cameron, Shankar Sankaran, and J. Scales, “Mixed methods use in project management research,” Project Management Journal, vol. 46, no. 2, pp. 90–104, 2015.
[30] “Encyclopedia Britannica Online,” Encyclopedia Britannica Online, 2016. [Online]. Available: https://www.britannica.com/topic/structuration-theory. [Accessed: 20-Aug-2017].
[31] A. Giddens, The constitution of society-outline of the theory of structuration. 1984.
[32] B. Latour, P. Jensen, T. Venturini, S. Grauwin, and D. Boullier, “‘The whole is always smaller than its parts’ - a digital test of Gabriel Tardes’ monads,” British Journal of Sociology, vol. 63, no. 4, pp. 590–615, 2012.
[33] H. J. Scholl, “Agent-based and systems dynamics modelling: A call for cross study and joint research,” in 34th Hawaii International Conference on Systems Sciences, 2001, vol. 0, no. c, pp. 1–8.
[34] E. Pruyt, “From Building a Model to Adaptive Robust Decision Making Using Systems Modeling,” in Policy Practice and Digital Science, 2015, pp. 75–93.
[35] J. B. Homer, “Macro- and micro-modeling of field service dynamics,” System Dynamics Review, vol. 15, no. 2, pp. 139–162, 1999.
[36] C. N. Guerrero, P. Schwarz, and J. H. Slinger, “A recent overview of the integration of System Dynamics and Agent-based Modelling and Simulation,” in System Dynamics Conference, 2016, pp. 1–13.
[37] S. De Marchi and S. E. Page, “Agent-Based Models,” Annu. Rev. Polit. Sci, vol. 17, no. April, pp. 1–20, 2014.
[38] A. Garro and W. Russo, “EasyABMS: A domain-expert oriented methodology for agent-based modeling and simulation,” Simulation Modelling Practice and Theory, vol. 18, no. 10, pp. 1453–1467, 2010.
[39] C. Swinerd and K. R. Mcnaught, “Simulating the diffusion of technological innovation with an integrated hybrid agent-based system dynamics model,” vol. 8, no. 3, pp. 231–240, 2014.
[40] D. C. Lane and E. Husemann, “Steering without Circe: Attending to reinforcing loops in social systems,” System Dynamics Review, vol. 24, no. 1, pp. 37–61, 2008.
[41] H. V. D. Parunak, R. Savit, R. L. Riolo, and H. Van Dyke Parunak, “Agent-Based Modeling vs . Equation-Based Modeling : A Case Study and Users ’ Guide,” in Multi-Agent Systems and Agent-Based Simulation, 1998, pp. 277–283.
[42] H. Park and N. Tran, “A Cognitive Agent based Manufacturing System Adapting to Disturbances,” vol. 10, pp. 806–816, 2012.
[43] N. Schieritz and A. Größler, “Emergent structures in supply chains - A study integrating agent-based and system dynamics modeling,” in Proceedings of the 36th Annual Hawaii International Conference on System Sciences, HICSS 2003, 2003.
[44] J. Banks, B. L. Nelson, J. S. Carson, and D. M. Nicol, “Discrete-Event System Simulation,” PrenticeHall international series in industrial and systems engineering, p. 640, 2010.
[45] J. Sterman, Business dynamics: Systems thinking and modeling for a complex world. 2000.